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Abstract

Quantum Topological materials are a class of matter that maintains quantized

(discrete) properties under topological (smooth) deformation. More specifically, a ma-

terial’s band structure will not have a topological quantum critical point, or inter-

section between different eigenstates of that material, under incremental change in the

system’s Hamiltonian. To characterize materials that have such a property, we have

resolved the 2D structures of a new QTM candidate, specifically .

In order to predict topological properties in new materials of interest, probabilistic

and spectroscopic properties of the eigenstates ’ energies is derived from Gaussian and

Lorenz fits, respectively. To investigate materials of interest, we use the UNISOKU

Scanning Tunneling Microscope to produce a tunneling current between sample and

microscope tip. the rate of current provides a Density of States (DoS), which is, through

Fourier analysis, then used to extract the material’s 2D surface properties.

By analyzing the surface structure as well as verifying topological properties, we

have been able to determine which materials (if any) exhibit topological behavior at

the quantum-mechanical level. (results about which magnets do and do not have this

property once we have analyzed data).
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1 Introduction

1.1 QTMs: an Overview

Quantum topological matter refers to a broad class of materials which retain

their quantum mechanical properties under such deformation that preserves

the material’s spatial property. The quantum property refers to the discrete

set of values a material’s characteristic can exist. The topological character-

istic refers to a property of a space (with a geometric representation) that

is constant even when the space itself changes. Topological deformations

which preserve such properties are often described as smooth, continuous or

isomorphic.

Interest in topological properties of matter at the quantum-mechanical

level has so far occupied research resources for only a few decades, and as an

urgent area of research confined to the last few years. Such research has led

to a fundamentally new understanding of how matter can be manipulated

and utilized in developing society.

1.2 Background and Motivation

From all corners of the globe, organizations are taking notice of this very

modern branch of condensed matterco. In 2016, the Nobel Prize 1 committee

awarded the prize in physics to the discovery of topological properties pre-

served even under disturbances at the quantum-mechanical level. Meanwhile,

the United States Department of Defense 2 has over the last decade offered

1Quanta Magazine
2DoD Grants and Awards
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generous grants to teams researching these materials, their properties and

potential applications.

Such research in the private sector will inevitably apply to a public land-

scape. The topological quantum properties found in both novel and common

materials will be utilized to further develop technologies (e.g. more durable

quantum computing). A fundamental understanding of how these materials

behave at the subatomic level is paramount to exploiting such properties.

1.3 This Investigation

This investigation resolves the 2D structural properties of new quantum topo-

logical magnet candidates. The specific magnet investigated in this study is

. This is of particular interest because of its lattice structure (see

Kagome Lattice).

Atomic-level analysis of surface-level topology is used with the UNISOKU

scanning tunneling microscope. Data acquisition is performed with Nanonis

computer. Analysis is computed through Igor (see ch. 4) and Matlab.

2 Principle Concepts of QTMs

2.1 Quantum Materials

2.1.1 Mechanics

Particles on the sub-atomic level (i.e. electrons) behave fundamentally dif-

ferently from that of entire objects on the macroscopic level. For electrons,

whose precise position and momentum are not simultaneously well-defined,

Quantum Mechanics (QM) expresses their behavior as waves (or eigenstates

). The Schrödinger equations i}dψdt = [− }2
2m∇

2 + V ]ψ (time-dependent) and

Eψ= [− }2
2m∇

2+V]ψ (time-independent) provide the non-relativistic frame-
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work on which to describe an electron’s state, i.e. the probability of finding

a particle in a certain state. The solutions provide a subset of discrete values

for the energies that a particle can exist. This range of discrete values is the

band structure (see 4.1) of a given material, useful for identifying a material’s

structural properties. Moreover, QM behavior provides the foundation for

which quantum tunneling and other quantum phenomena occur.

2.1.2 Phenomena

Quantum materials are classified as such because their structures exhibit be-

havior unexplained by classical physics. The motion of electrons and thus the

atomic structure of materials is only explained through quantum mechanics.

One main property of this is that energy levels are quantized so that

eigenstates exist at discrete energies. This means that, for a system’s set

Hamiltonian : (a) the particle/system can only exist in a certain range of

momentum or coordinate space and cannot appear elsewhere, and (b) all

eigenstates are non-degenerate. It is the preservation of this last point that

characterizes band topology (see 2.2).

Entanglement is another QM behavior, which is the long-range interac-

tions between electrons. Electrons couple, or have corresponding movement,

even at distances that are macroscopic for electrons. This ”spooky action

at a distance” coined by Einstein in the 1930s emphasizes the importance of

determining a material’s general atomic structure and macroscopic behavior

(see 2.3).
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2.2 Band Topology

2.2.1 Theory

Originally an abstract branch of mathematics, topology is the set of prop-

erties of a geometric surface that go unaltered from continuous or smooth

deformation. In condensed matter, Band Topology is the theory that uses

the quantum-mechanical properties of subatomic matter that give rise to

certain properties.

Energy is quantized, meaning that the energy can only be certain discrete

amount(s) in each eigenstate depending on the system’s Hamiltonian. If

this Hamiltonian is altered, the energy levels also change. The topological

property of interest at this level, then, is preserving this quantization, which

is refered to as adiabatic continuity.

2.2.2 Interpretation

Explicitly, adiabatic continuity is achieved if the Hamiltonian can be in-

crementally adjusted so that the topological quantum critical point, or de-

generate (equivalent) energy level between the ground and any other state,

never occurs. In this case, the band gap , or non-zero difference between

energy levels, is preserved, hence quantum topology is preserved.

2.3 Characteristics

Topological quantum materials can exhibit vastly different behaviors, though

identifying a material as topological fortifies the network of materials science

research and enhances the theoretical framework not yet strongly established.

A few notable examples:
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Figure 1: Topological Insulator: electron orbits due to the Quantum Hall Effect and
topological property give rise to edge conductance.

2.3.1 Topological Insulator

When topological insulators are in a uniform magnetic field, as according to

the Quantum Hall effect, all of the electrons are subject to orbit at quantized

energies given by E = ~ω(n + 1/2), corresponding to the nth excited state.

The inner electrons are in closed orbits, not conducting electricity. Electrons

on the edges of the material, however, are in open orbits. This allows elec-

tricity to be conducted at the surface edges of the material. This is subject

to the Quantum Hall effect, where there is net zero field inside but constant

field on surface, leading to topologically preserved orbits for a substantial

part of the material.

2.3.2 Superconductivity

Superconductivity is a result of the Meissner effect, which is the expulsion

of a magnetic field around such a material. Superconductors are of partic-

ular interest in topological materials because they exhibit zero-bias conduc-

tion peaks, an important indicator of topological insulators during tunneling
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analysis3 (see Tunneling Current, 3.2.2.). This property may also lead to the

energy gap that remains a topological property.

2.3.3 Magnetism

Another important quantum property is magnetism, specifically ferromag-

netic and anti-ferromagnetic matter. For anti-ferromagnetic behavior, elec-

trons in one lattice iteration have opposite spins. Found in e.g. the Kagome

lattice, however, the third electron in this triangular lattice pattern is in a

superposition of spin states. This has great implications for quantum com-

puting, where this pattern multiplied many times over gives rise to an expo-

nentially large possibility of states.

3 Scanning Tunneling Microscopy

3.1 Development

Modern classical microscopes employ light as the primary visualization tech-

nique. Even with the most precise such microscopes, inspection at the atomic

level is not feasible. In 1982, this changed when Binnig and Rohrer utilized

the principle of quantum tunneling to construct the first (and 1986 Nobel

Prize-winning) Scanning Tunneling Microscope (STM). Over a generation

later, STM continues to be widely used to determine a sample’s atomic struc-

ture.
3Chen et. al.
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3.2 Principles

3.2.1 Quantum Tunneling

Because electrons behave quantum-mechanically, movement is different on

the sub-atomic level. Unlike macroscopic objects, electrons exhibit quan-

tum tunneling behavior, which is the capability of wavelike particles to pass

through a classical barrier. The exponential solution for the Schrödinger

equation mathematically demonstrates a nonzero probability that an elec-

tron will appear briefly past the incident point of given classical boundary,

defined by the potential V. For each material and microscope, the equations

take the form

ψ(z) = ψ(0)e
−iEmt

~ (1)

where m is either s for sample or t for microscope tip. The most general

solution in the gap region for the combined system is

ψ(z) = ψ(0)e−κz (2)

where κ =
√

2πε
~ . Because this is exponential behavior, the tunneling wave

decays to zero exponentially quickly, but still at a distance enough for tun-

neling to occur. This is the foundational principle on which the Scanning

Tunneling Microscope operates.

3.2.2 Tunneling Current

Using tunneling current to reveal atomic structure properties is a method

derived from the principle of quantum tunneling. The tunneling current

refers to the rate at which elections are moving through the classical barrier.

It is driven by applying a potential bias or bias voltage (Figure 3) to one

7



source of electrons in the system.

In addition to the applied bias voltage , the tunneling current is affected by

the width of the tunneling barrier. Distance modulation causes fluctuations

in the current. This is useful information for determining both spectroscopic

and electronic topological properties properties4. For the electrical properties

this paper is interested in investigating, maintaining a constant delivers the

corollary height information needed to make topological assessments.

Fermi’s Golden Rule of time-dependent perturbation theory is

R =
2π

~

∣∣∣∣M2
∣∣∣∣2ρ(ε) (3)

where R is the rate of transition.5 This leads us to the expression for

current between systems of tip and sample

I =
2πe2

~
|M |2ρt(ε)ρs(ε)V (4)

where ρ(E) refers to the Density of States of the material analyzed (t=tip,

s=sample), M is the Bardeen matrix element of perturbation between two

interacting states. This is used to calculate the current difference between

the continuum of two states6, namely the charge in the STM tip and that of

the sample. M is provided by the integral of the commutator of the sample’s

wavefunction and the conjugate of the tip’s wavefunction.

The net tunneling between the two wavefunctions of tip and sample in

both directions:

I =
4πe

~

ˆ ∞
−∞
|M |2ρs(ε+ eV )ρt(ε)[ft(ε)− fs(ε+ eV )]dε (5)

4Randeira
5Griffiths
6Chen
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where f is the Fermi distribution 1

1−e
ε

KbT
. From here, with the assertions

that (a) the Density of States of the tip is in fact flat and (b) the scope of

DoS studied is finite, current is derived:

I ≈ 4πe

~
ρt(0)

ˆ 0

−eV
|M |2ρs(ε)dε7 (6)

This is the formalism for the Integrated Density of States (IDoS). To extract

the shape, or the 2D structure, the Density of States (DoS) is desired, as is

derived in our data acquisition (see 3.3.2).

3.3 Experimental Method

Figure 2: Scanning Tunneling Microscopy: Sample schema of STM. A feedback loop
keeps the current between sample and tip is kept constant (alters absolute z component,
keeps relative z component constant), and scanning occurs in xy directions.

7Hoffman 2003
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3.3.1 Mechanism

Experimentation using STM relies on the tunneling current. The STM tip is

placed at a fixed height of, generally, a few Angstrom away from the sample

surface. This distance is appropriate for tunneling to occur. To utilize the

tunneling current, In order to be able to perform this integration, one side of

the sample has to be cleaved, or cut so that the surface’s opposite face is flat.

3.3.2 Density of States

Figure 3: Tunneling in STM: When a bias is applied (eV), tunneling occurs so that the
filled states of the greater-potential matter tunnel to occupy the other material’s empty
states. The Density of States (DoS) information from the sample can be gathered from this
process, under approximation that DoS of the STM tip is constant.

Tunneling current is produced as a result of a potential bias or bias voltage

applied to the system. This provides information about the Integrated Density

of States (IDoS). In order to gather the wavefunction information about the

material’s structure, however, the local Density of States (DoS) is needed.
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This can either be derived, or a small modulation with respect to V can be

applied. This results in being able to measure DoS, by

dI

dV
∝ ρs(ε+ eV )8 (7)

where the matrix element M and DoS ρt(ε) are, still, approximated to be

constants.
dI
dV (conductance) as a function of applied bias eV offers insight into the

material’s band structure (see 4.1).

3.4 Operation

3.4.1 Sample prep

In order to extract a flat surface for tunneling analysis, the sample has to be

properly prepared for cleaving. A 2:1 mix of Torr Seal Resin and Hardener

is applied to the middle of a sample no larger than 1mm2, to which a plastic

cleaving stick no larger in diameter than the sample is attached. The sample

is placed in the middle of a copper plate, followed by about an hour of heating

on a hot plate. Once heating is done, the part of the sample with Torr Seal is

then applied with graphene spray to maintain proper tunneling conductance.

After brief drying, the sample is then ready to be loaded, cleaved and scanned.

3.4.2 STM

The Scanning Tunneling Microscope, though fragile, is a powerful tool used to

regulate the ideal conditions necessary for a successful scan. When a sample

is ready to be analyzed, it first needs to be manually loaded into a vacuum-

controlled doc. This ensures that impurities are minimized. The sample is

then transported again to the cleaving chamber, cooled by liquid nitrogen.

8C. J. Chen
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It is cleaved by manually clipping off the stick previously adhered by Torr

Seal to the sample. After cleaving, the sample is then loaded into a liquid

helium-cooled chamber, kept ideally 4-5K at the coolest depths and 10K at

the sample level. From here, the sample can be unloaded, rotated, and any

other manipulations between scans.

4 Experimentation

During trials, an array of variables may delay result acquisition. In a ma-

jority of cases, even in the most secure vacuum environment, impurities are

still found on the sample. During analysis, the impurities cover the surface,

eliminating otherwise viable surface area space. In other trials, sometimes a

sample is only partially cleaved, rendering the sample itself no longer viable

to analyze.

When a sample is used, if sample does not exhibit clear atomic structure

(faulty resolution), then the sample goes through up to three rounds of x-y

rotation until either a surface with clear atomic structure has been identified.

Before a surface is sent to the liquid hydrogen-regulated chamber to be

scanned, a couple of visual indicators are noted. If the STM plastic stick is

not fully removed and damaged beyond the capability of removal, then the

sample is not used at all. If a sample appears dull/is not notably metallic,

possible defects/impurities are expected. If the sample, however, appears

metallic after cleaving, this is correlated with a higher success rate in finding

clean surfaces.

4.1 Technologies

Careful analysis of materials requires the use of many technologies. The

two I have mainly used over the SRC program are Matlab and Igor. Igor
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and Matlab are both data-analysis and visualization software programs. Igor

is compatible with STM software and can keep track of STM and sample

specifications. Matlab is a wider-used program capable of producing easily-

customized figures. Both are capable of producing Lorenz (spectral) and

Gaussian (statistical) plots of surface-structure behavior.

Another example of software briefly managed over the summer is WSxM,

a Windows-based STM data processing software. It can perform such manip-

ulations as Fourier Transform, which is used to derived the momentum-space

and therefore structural properties of a material at the atomic level. For

Mac/Linux users, enabling TeamViewer with Windows is a useful method.

Software programs Vesta and VASP are used for theoretical imaging and

manipulation. Vesta is a free-access program suitable for atomic structure

imaging of registered compounds (available widely through Springer materi-

als). VASP is a program available by license, constituting the imaging with

added programming capacity.

The STM used in lab is the UNISOKU, used in tandem with computer

software Nanonis. UNISOKU consists of all of the aforementioned parts of

the STM, and all raw data acquisition as well as UNISOKU operation is

dictated to the STM equipment through Nanonis.

5 Data Analysis

5.1 Band Structure

The band structure is the spectrum of allowed energies for the different

excited/ground states in a given system upon applying different biases. A

band gap is the difference in energy between eigenstates . When a band

gap is nonzero and finite, the states are non-degenerate. If this property is

preserved, the band topology is also preserved.
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A method for visually resolving the band structure is to construct a ma-

terial’s Brillouin Zone (BZ), which is the reciprocal lattice constructed by

performing a Fourier transform on real space. In the BZ, we are able to

calculate and plot the energy in momentum-space k. k vs E band-structure

visualization is of particular interest because the allowed energies of different

states are visually represented.

Graphically, points of high symmetry in the BZ are important because

they indicate critical areas of behavior. High-symmetry points (e.g. trivial

Γ) are invariable points under a high order of rotation. In the Brillouin Zone ,

such points map onto themselves in reciprocal space, indicating features that

are consistent in multiple rotations when a structure is decomposed into all

of its individual patterns. Such behavioral symmetries are notable when in

the context of momentum space (see 5.2).

5.2 Landau Levels

When a material is in a magnetic field, the kinetics of its electrons due to the

quantum hall effect are affected. When the Landau gauge is factored in, which

preserves time-reversal symmetry, the energy of the electrons can be reduced

to a one-dimensional oscillation, where the energy levels are En = ~ω(n+ 1
2).

This produces the Landau levels.

Landau levels are visualized through E-vs-conductance plots, where the

peaks correspond to the Landau levels.

In topological materials, Dirac-Cone representaion of LLs indicate said

quantized energies as well as where a band gap would be. In momentum-

space , derived from the Fourier Transform of position-space on a wavefunc-

tion, the relationship between eigenenergies and movement can be analyzed.

14



Figure 4: Dirac-Cone LLs: Example of two-dimensional momentum in relation to LLs (in
varying colors). At the plot origin–where the cones almost appear to meet–would be the
point of the band gap.

5.3 Kagome Lattice

Researchers in this particular lab investigate materials that have a charac-

teristic Kagome lattice, which consists of one layer of triangulated atomic

arrangement. This lattice has exhibited topological properties in experi-

ment, and its theoretical application to quantum computing makes it an

exciting class of materials. Because of the triangulation of the atoms, an

anti-ferromagnetic Kagome lattice will have two opposite-spinning electrons

with one electron in superposition. This superposition leads to the theoretical

application.

15



Figure 5: Kagome Lattice Structure in : The Mn atoms in a layer of the ma-
terial create the lattice, introducing exciting potential applications for it from this physical
property.

6 Results

For magnet , Landau levels can be detected. This constitutes

as a promising possible topological magnet. The magnet also

exhibits near-consistent LLs within the range of 100-150V for entire tested

range (0-10T) of magnetic field. This is a prime indicator that this magnet

retains its topological properties within this range of potential bias.

The Kagome lattice is also identified through STM. As theoretically mod-

eled, the microscope detects the topography at the atomic level of the ma-

terial, which has a visual representation of the lattice structure. This is an

indicator of the class of materials it belongs to as well as behavioral properties

that make it an exciting material to investigate in up-and-coming technolo-

gies.

7 Discussion

The landau levels detected in are defined well, suggesting it may

be a good topological magnet candidate. This research inches us closer to
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Figure 6: Landau Levels (LLs) of : LLs are graphically visible at any local maxima
of dI

dt
(colorbar) with respect to the potential bias (V). LL peaks are found through entire

range of tested magnetic field (T).

Figure 7: Lattice Sructure of : An STM scan of a section of the material demon-
strates the Kagome lattice structure linked to promising topological and quantum properties.

defining the theoretical basis for quantum topology and how it may be ben-

eficial in developing society. Further research will focus on determining the

magnet’s classification as well as establishing a theoretical basis for topolog-

ical behavior.
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This work is ongoing for the 2019-2020 academic year in the Hasan lab.
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