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Abstract

In this project, we propose a non-Hermitian, time-dependent, two-level system featuring spon-

taneous PT symmetry breaking. Interesting features robust against shift in initial conditions are

present in the dynamics of the system; for instance, the norms of the coefficients of the instanta-

neous eigenstates are always the same in the time period where both the eigenstates possess the

PT symmetry. These features hint at ways to experimentally prepare a light field with two modes

of the same amplitude. They also motivate future research on whether similar patterns can be

found in other, many-body systems with spontaneous PT symmetry breaking.

I. BACKGROUND

It is well known that in the framework of Quantum Mechanics the time evolution of

physical states is governed by a Hermitian Hamiltonian, whose spectrum, corresponding to

the energy levels of the system, consists of real numbers only. In the last decade of the last

century, however, several systems governed by non-Hermitian Hamiltonians were also found

to have real spectra [1]. This founding motivated the subsequent interest in the dynamics of

as well as physical meanings of non-Hermitian systems. Besides the ambitious work exploring

the possibility of new kinds of Quantum Theories with non-Hermitian Hamiltonians [2], a

direct application of the solution of non-Hermitian systems to wave-guide optics was stressed

in the recent literature [3, 4]. In the latter case, even a negative (positive) imaginary part

in the energy spectrum can carry physical meanings, for it results in an exponential growth

(decay) and hence can be interpreted as gain (loss) applied to an optical system in an

experiment.

To investigate the dynamics of a system governed by a non-Hermitian Hamiltonian in a

simpler setting, several attempts were present to generalize the Hamiltonian appearing in

the Landau-Zener model, a textbook toy model first proposed to understand the dynamics of

transitions between two quantum states. As one of the discoveries, adding a non-Hermitian,

time-dependent term to the Hamiltonian can quench the transition between the two states

and hence allow the parameters of the system to change faster while keeping the system

not far from one of its instantaneous eigenstates [5]. This happens mainly because the non-

Hermitian term introduces imaginary parts in the eigenengergies of the two states, separating

their energy levels further and consequently making the jump between them less likely to
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occur. It is the non-Hermiticity that leads to those new patterns in the system’s dynamics.

Another interesting feature unique to non-Hermitian systems is the presence of excep-

tional points. A system is said to be at the exceptional point when the its eigenstates

coalesce i.e. do not fully span the space consisting of all the possible states of the system.

While mathematically the presence of those points is a straightforward result of linear alge-

bra, their physical significance is less well understood. Given that in the parameter space of

the Hamiltonian an exceptional point can be viewed as a singularity generating nontrivial

topological features, the novelty the exceptional point introduces is manifest in many-body

systems [6], which are rich of topological phenomena.

It is also possible to study the dynamics near the exceptional points under the context

of Parity-time (PT) symmetry breaking. Conventionally, the PT reversal operator PT , the

operator that switches the sign of space and time of a system’s dynamics, is defined such

that [2, 7]

PT xPT −1 = −x, PT pPT −1 = p, PT iPT −1 = −i. (1)

The last constraint is required to maintain the canonical commutator relation [x, p] = i.

A system is hence called PT-symmetric (or having PT symmetry) if its Hamiltonian H is

invariant under the action of PT operator i.e. PT HPT −1 = H. This definition also applies

to the eigenstates of the system. However, as it is in the general context of symmetry

breaking, the eigenstates of the system do not necessarily possess the symmetry of the

system. Based on this consideration, we say that a system undergoes PT-symmetry breaking

if its Hamiltonian has the PT symmetry while some of its eigenstates does not. As is shown

by the example under investigation in our project, the occurrence of PT-symmetry breaking

is directly related to exceptional points in some cases.

In this report, we propose a non-Hermitian generalization of the Landau-Zener model. We

see that intriguing feature of its dynamics takes place between the exceptional points, and

an analytic explanation of this feature is provided. We also examine the system under the

context of PT-symmetry breaking and attempt analyze the latter one’s role in the occurrence

of the interesting dynamics. Our result can be also potentially applied to optics, enlightening

a way to experimentally prepare a light field with some desired special properties.
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II. RESULTS

We first list some general features of the system governed by the time-dependent, non-

Hermitian Hamiltonian of our concern

H(t) =

iδt ω0

ω0 −iδt

 , δ, ω0 > 0, (2)

whose exceptional points are ±te for te = ω0/δ. This system can be realized as a spin under

an imaginary external field. Under this consideration, we decide the representation of the

PT operator to be

PT K =

0 1

1 0

 (3)

where K is the operator performing complex conjugate. With this at hand, we are able to

examine the eigenstates of the system and decide whether PT-symmetry breaking happens

in the following three time periods. For simplicity of notation, from now on |ψ±(t)〉 denote

the eigenstates of H at time t. We also define

θ(t) = arcsin
ω0

δt
(4)

for t /∈ (−te, te).

• t ∈ (−∞,−te).

E± = ±i
√
δ2t2 − ω2

0. (5)

|ψ+〉 =

− sin θ
2

i cos θ
2

 , |ψ−〉 =

 cos θ
2

−i sin θ
2

 . (6)

PT |ψ±(t)〉 = −i |ψ∓(t)〉 . (7)

The instantaneous eigenstates break the PT-symmetry of the system since the PT

operator maps each eigenstate to the other one, as shown in Equ.(7).

• t ∈ (−te, te).

E± = ±
√
ω2
0 − δ2t2, (8)

|ψ±〉 =
1√
2

 1

±
√

1−
(
δt
ω0

)2
− i δt

ω0

 . (9)
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PT |ψ±(t)〉 =
1√
2

±
√

1−
(
δt
ω0

)2
+ i δt

ω0

1

 ∝ |ψ±(t)〉 . (10)

Since timing a state with a constant number does not change its physical meaning,

the instantaneous eigenstates preserve the PT -symmetry of the system.

• t ∈ (te,+∞).

E± = ±i
√
δ2t2 − ω2

0, (11)

|ψ+〉 =

 cos θ
2

−i sin θ
2

 . |ψ−〉 =

 sin θ
2

−i cos θ
2

 . (12)

PT |ψ±(t)〉 = i |ψ∓(t)〉 . (13)

Unsurprisingly, the situation here is similar to the first case. The PT-symmetry break-

ing occurs.

Based on above observation, we remark that the exceptional points are crucial time moments

in establishing and breaking the PT symmetry.

The dynamics between the exceptional points are also interesting. Given that we have

obtained a continuous definition of |ψ±(t)〉, from now on we may decompose the state of the

system at any time as

|ψ(t)〉 = c1(t) |ψ+(t)〉+ c2(t) |ψ−(t)〉 . (14)

As shown in the numerical results in Fig.1, the norms of c1(t) and c2(t) are equal to each

other for any t between the exceptional points. More interestingly, this phenomenon is

robust against change in initial conditions as long as the initial condition is set at a time

−T that is ancient enough. More peculiarities may be observed in Fig.2 where we plot the

time evolution in complex planes. To name one, the traces of c1(t) and c2(t) in Fig.2b are

symmetric with respect to the asymptotic axis in Fig.2a. This hints at the presence of some

conserved quantities.

Mathematically, we are able to show that the difference π between the asymptotic phases

of the c1(t) and c2(t) as t approaches te (see in Fig.2a) directly contributes to the symmetric

behavior of the traces of c1(t) and c2(t) in Fig.2b. The phenomenon |c1(t)| = |c2(t)| for

t ∈ (−te, te) is a straightforward consequence of that symmetric behavior.
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FIG. 1: Time evolution of the norm of the normalized coefficient |c1|2/(|c1|2 + |c2|2). The seeming

discontinuity near the exceptional points t = ±te is due to the numerical failure in performing the

inverse of a singular matrix during decomposing. Nevertheless, the first-order derivative is

discontinuous at those points ±te. Initial conditions: cg(−T ) = 0.6 + 0.8i, ce(−T ) = 0.3, T = 20.

Parameters: δ = 0.5, ω0 = 0.3, and hence te = 0.6.

(a) t ∈ (−T,−T + 2) (b) t ∈ (−te, te)

FIG. 2: The dynamics of c1 and c2 in the complex plane. Black dots denote the initial states,

which are chosen to avoid triviality: cg(−T ) = 0.8 + 0.6i, ce(−T ) = −
√

0.91 + 0.3i. Other

parameters: ω0 = 0.3, δ = 0.5, T = 20, and hence te = 0.6.
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III. CONCLUSION

In conclusion, the system governed by the non-Hermitian, time-dependent Hamiltonian

H in Equ.(2) features spontaneous PT-symmetry breaking and peculiar dynamics robust to

change of initial conditions. Both of these two phenomena are closely related to the presence

of exceptional points, whose existence is impossible in the usual Hermitian systems. This

finding inspires further investigation into a many-body generalization of the system and also

may be applied to optics. Should one be able to construct a one-dimensional optical system

whose Maxwell Equation is similar to the Schrödinger Equation i |ψ̇(t)〉 = H |ψ〉 in form, it

would be possible to prepare experimentally two modes of light with equal amplitudes.

Although we are able to provide a mathematical explanation to the peculiar dynamics, at-

tributing them to the asymptotically conserved phase difference, it remains unclear whether

the conserved quantity is a result of PT symmetry as is usually suggested by the Noether’s

theorem. Another future direction is to explain some features of the dynamics analytically

to further detail. Possible goals are the jump in first-order time derivative of the quantity

|c1|2/(|c1|2 + |c2|2) at the exceptional points and the process where the phase difference is

asymptoticlly formed.
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