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Abstract

The study of metabolism in cancer has gained trac-
tion for its potential in the field of cancer genomics to
provide new diagnostic treatments and a better under-
standing of the ramifications of metabolic mutations
in cancer development. Using differential gene expres-
sion analysis(DGE), a statistical technique often uti-
lized in the realm of bioinformatics, we observe rela-
tionships between the RNA counts of patients affected
with certain metabolic enzyme mutations and the ex-
pression of Cancer Geome Consesus(CGC) genes. Our
preliminary results show the usefulness of this method,
which is supported by previous research. The method
is replicated across three different cancer types with
mutations in the metabolic enzyme isocitrate dehydro-
genase 1(IDH1) being the target of analysis. This will
be useful in better understanding cancer development
in the larger picture of personalized medicine in cancer
treatment.

1 Introduction

In 2018 there were over 1.7 million new cancer cases in
the United States, resulting in an estimated $147.3 bil-
lion in medical care expenditures[1]. With the number
of cases projected to rise in the coming years, the need
for new approaches to studying cancer is more press-
ing than ever. There is a growing attention towards
the role that metabolic pathway mutations play in the
development of different cancer types. Mutations in
metabolism have been known to be a hallmark of can-
cer development and identifying these relationships has
been a target for research in the past decades.

For instance, it was shown that mutations by cancer
in the metabolic enzyme IDH1 are directly linked to
the catalysis of α-ketoglutarate into the oncometabo-
lite 2-hydroxyglutarate(2HG)[4]. The abundance of
the latter product in patients is associated with a
higher risk of malignant brain tumor development.
This work paved the way for continued research into
the ramifications of IDH mutations in the develop-
ment of cancer[5][6]. This metabolic profiling of cancer

cells was also performed in breast tumors, where 2HG
was associated with MYC-pathway activation in breast
cancer(BRCA)[7].

The prevalence of metabolic alterations in different
types of cancers has already been demonstrated; we are
interested in looking into additional metabolic relation-
ships. Thus the pursuit of potentially new relationships
between metabolites and cancer-driving genes shows
promise and is the guiding motivation behind our work.

2 Methodology

2.1 Data Sources

Our research is primarily computational in nature and
involves the analysis of vast amounts of patient data
within The Cancer Genome Atlas(TCGA) provided
by the National Institute of Health. We first subset
this data set into a specific cancer type and retrieve
its associated mutation annotation format(MAF) file,
which contains all of the mutations found within the
group of patients, among other data. Currently we are
working with the data associated with LGG, BRCA,
and prostate adenocarcinoma(PRAD) with different
metabolic enzymes. We then divide these data sets
into two populations, one containing a mutation in a
chosen metabolic gene (e.g. IDH1) and the other not
containing such mutation. The count data for each
patient is then retrieved at which time a differential
expression analysis is performed.

2.2 Differential Expression Analysis

Differential analysis of gene expression data has been
shown to be effective at modeling the roles that cer-
tain mutated genes play in the development of cancer.
In the realm of bioinformatics, differential expression
analysis involves statistical analyses performed upon
normalized count data[2]. This count data is usually in
the form of RNA transcript counts that identify which
genomic loci are expressed in an individual patient[3].
In our research, we use this technique to provide in-
sight into the effects that mutated metabolic genes have
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upon the over and under expression of certain Cancer
Genome Census(CGC) genes.

We can visualize the obtained expression data in a
variety of ways, most notably with the help of the
R-package edgeR[3] which is primarily used for data
analysis in bioinformatics. One such preliminary vi-
sualization we obtained is shown in Figure 1, where
the Fold Change(FC) describes the ratio in expression
level in a certain gene between a healthy and an af-
fected population. From those results we can single
out the most positively expressed gene, sushi domain
containing 2(SUSD2). There has been work surround-
ing this gene that highlight its role in tumorigenesis in
patients with BRCA[8].

3 Results

A multitude of studies show that the most over-
expressed CGC genes genes within the three observed
cancer types were linked to the development and pro-
gression of cancer. Our selection of the following three
cancer types is based on their documented effects on
metabolic enzyme mutations and cancer-driving gene
expression. The results of our DGE across the three
cancer types are shown in Figure 1.

3.1 LGG Results

Low-grade glioma is a type of slow-growing tumor
which develops from astrocytes and oligodendrocytes,
both found in the human brain. The result from a
clustering of patient data in mutated vs. nonmutated
IDH1 is shown in Figure 2.

The most differentially overexpressed genes were
found to be OLIG2, ETV1, and TCG12. All of these
genes are highly linked to the development of LGG
as shown in The Human Protein Atlas and relevant
research[10].

3.2 BRCA Results

Although mutations in BRCA1 and BRCA2 are more
commonly linked to the development of breast cancer,
there is evidence that metabolic alterations can also
play a role in this cancer type[11].

The most differentially overexpressed genes were
found to be NRIP3 and SUSD2. The overexpres-
sion of both of these genes has been linked to BRCA
development[7][10].

3.3 PRAD Results

The metabolic mutation landscape of PRAD is less
known than LGG and BRCA by comparison. However,
because of the nature of prostatic cells to accumulate
zinc and the subsequent inhibitions within the citric
acid cycle(a metabolic pathway), a growing interest has
surrounded the role of metabolism in PRAD[12].

APLP1 and ADH1C are the most differentially ex-
pressed genes gathered from the TCGA dataset in
PRAD. Research shows that the APLP family of genes

may be linked to the development of a variety of cancer
types[13].

4 Discussion

In this work, we successfully developed a pipeline to
link mutations in metabolic enzymes to changes in ex-
pression in CGC genes. Supported by previous re-
search and data on The Human Protein Atlas, we
show that this type of DGE is a powerful tool in ac-
curately highlighting over- and under-expressed CGC
genes. Many of our preliminary results highlight re-
lationships between metabolic enzymes and cancer re-
cently uncovered in experimental work.

At this stage in our work we did not take into con-
sideration some important confounding factors that
could potentially have adverse effects on our results:
Copy Number Variation (CNV) and biological varia-
tion among patients. CNV is a phenomenon where the
number of repeats in some loci of the genome can vary
among individuals in a population. High CNV status
of any given gene is correlated with higher expression of
that gene, which may confound DGE results. In order
to account for this, we will utilize the CNV data pro-
vided by the TCGA and incorporate it as a covariate
in our statistical model.

Biological variations between patients are important
considerations since they are independent of cancer
sub-type or metabolic mutations. In certain cancer
types, the TCGA has data pertaining to control(non-
cancerous) tissue in order to account for variations that
do not arise from the cancer itself. In future work, we
must include these additional covariates to refine our
results.

Additionally, we aim to investigate the relationships
between certain functional sites within mutated pro-
teins (as opposed to the mutation as a whole) and the
expression of CGC genes. The Singh Lab has devel-
oped software tools to perform such analyses, such as
CanBind[14]. Going forward we can incorporate Can-
Bind into our results to investigate the impact that
mutations in specific sites in a metabolic enzyme can
have upon the expression of cancer-driving genes.
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Figure 1: Shown are the differential gene expression data from the three analyzed cancer types. The data are
represented as the log Fold Change (x -axis) by the negative-log p-values(y-axis). The data set is color split
between the populations containing a mutation in a CGC gene(blue) and not containing such mutation(red)
.

Figure 2: Shown is a clustering of CGC genes from the LGG patient dataset, split among patients who show
a mutation in IDH1(red) and do not present the mutation(blue). The heatmap coloring corresponds to the
RNASeq count density(in relative units).
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