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Abstract

This paper, exploratory in nature (i.e. most of the work so far is a synthesis of existing
research paper/books), seeks to study the geodesics motion outside a Kerr black hole (i.e.
restricted to the region outside the outer horizon). With a basic understanding of the concepts
in differential geometry, namely smooth manifolds, tensors, semi-Riemannian geometry, and
the basics of geodesics and Kerr metrics, this paper then discussed equatorial geodesics, the
geodesics with θ ≡ π

2 . With detailed outlining about the properties of equatorial geodesics, the
paper then discussed about more general cas, where Hamilton-Jacobi approach is applied.

I. Historical Backgrounds

In general relativity, a geodesic is a generaliza-
tion of the notion of a "straight line" to curved
spacetime. Under this consideration, a freely
moving or falling particle’s trajectory is always
considered to be a geodesics. In particular, the
world line(frame) of a particle free from all
external, non-gravitational force is a particular
type of geodesic.

Moreover, gravity can be regarded as not a
force but a consequence of a curved spacetime
geometry where the source of curvature is the
stress-energy tensor (representing matter, for
instance). Thus, for example, the path of a
planet orbiting a star is the projection of a
geodesic of the curved 4D spacetime geometry
around the star onto 3D space. In this paper,
we’ll focus on studying the properties of rotating
black holes.

To mathematically analyze the properties of
such black holes, we first restrict our attention
to uncharged particles. To study the properties
of uncharged particles, we employed a system
of metric, the Kerr metric. The Kerr metric
is a generalization of the Schwarzschild metric,
which described the geometry of spacetime
around an uncharged, spherically-symmetric,

and non-rotating body.

According to the Kerr metric,rotating black-holes
should exhibit frame-dragging (also known as
Lense-Thirring precession), a distinctive predic-
tion of general relativity. Roughly speaking, this
effect predicts that objects coming close to a
rotating mass will be entrained to participate in
its rotation, not because of any applied force or
torque that can be felt, but rather because of the
swirling curvature of spacetime itself associated
with rotating bodies. At close enough distances,
all objects - even light - must rotate with the
black-hole; the region where this holds is called
the ergosphere.

II. Mathematical Basis

i. Tensors
The notion of tensor field on a manifold
generalizes the notion of real-valued function,
vector field, and one-form, and thus provides
the mathematical means of describing more
complicated objects on a manifold.

Formally, let V1, V2, ..., Vs be modules over a ring
K. Then V1×V2× ...×Vs, the set of all s-tuples
(v1, v2, ..., vs) with vi ∈ Vi, is again a module
over K. If W is also a module over K, then a
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function

A : V1 × V2 × ...× Vs → W

is K-multilinear provided A is K-linear in each
slot. Similarly, let V ∗ be the set of all K-linear
functions from V to K. Then V ∗ makes a dual
module of V .

Definition 1. For integers r ≥ 0, s ≥ 0 not both
zero, a K-multilinear function A : (V ∗)r×V s →
K is called the tensor of type (r, s) over V .

A tensor field over a smooth manifold M is a
tensor over the F-mutilinear function

A : X∗(M)r × X(M)s → F(M)

. Hence A takes in r one-forms θ1, θ2, ..., θr and
s vector fields X1, ..., Xs produces a real-valued
function

f = A(θ1, θ2, ..., θr, X1, ..., Xs) ∈ F(M).

Here θi occupies the ith contravariant slot, Xj

the jth covariant slot of A.

ii. Semi-Riemannian Manifolds
With the definition of tensor field, we are now
ready to provide a generalization to the familiar
geometry of the usual Euclidean space R3

Definition 2. A metric tensor g on a smooth
manifold M is a symmetric nondegenerate
(0,2)tensor field on M of constant index.

In other words, g ∈ T2
0(M) smoothly assigns to

each point p of M a scalar product gp on the
tangent space Tp(M), and the index of gp is the
same for all p.
Thus a semi-Riemannian manifold is an or-

dered pair (M,g): two different metric ten-
sors acting on the same manifold would con-
stituent different semi-Riemmanian manifolds.
The common value v of index gp on a semi-
Riemannian manofold M is called the index of
M : 0 ≤ v ≤ n = dim M . If v = 0, M is just the
Riemannian manifold in the usual sense.
If x1, x2, ..., xn is a coordinate system on U

the components of the metric tensor g on U are

gij = g(∂i, ∂j) .= 〈∂i, ∂j〉

Since g is symmetric gij = gji. Finally on (u)
the matric tensor can be written as

g = Σgijdxi ⊗ dxj

Recall that, the basis theorem of usual Euclidean
space asserts that that for each point p ∈ Rn it
is possible to find a basis ∂1, ..., ∂n in the tangent
space Tp(M) such that vp = Σvi∂i Thus the dot
product on Rn give rise to a metric tensor on Rn

with
〈vp, wp〉 = v · w = Σviwi.

For an integer ν with 0 ≤ v ≤ n, changing the
first ν plus signs above to minus gives a metric
tensor

〈vp, wp〉 = −
ν∑
i=1

viwi +
n∑

i=ν+1
viwi

of index ν. We denote the resulting semi-
Euclidian space Rn

ν . It reduces to the usual Eu-
clidean space if ν = 0.
The geometric significance of the index of a

semi-Riemannian manifold derives from the fol-
lowing trichotomy:

Definition 3. A tangent vector v to manifold
M is
spacelike if 〈v, v〉 > 0 or v = 0,
null if 〈v, v〉 = 0 and v 6= 0,
timelike if 〈v, v〉 < 0

The terminology derives from relativity theory,
and particularly in the Lorentz case, null vectors
are also said to be lightlike.

Now suppose V and W are two vector fields
on semi-Riemannian manifold, we then define
a new vector field on M whose value at each
point p ∈ M is the rate of change of W in the
Vp direction.

Definition 4. Let u1, u2, ..., un be the natural
coordinates on Rn

ν , the vector field

DVW = ΣV (W i)∂i

is called the natural coordinate derivative of
W with respect to V .

In light of this consideration, it is necessary
to axiomatizing its properties so that it would
be applicable to an arbitrary semi-Riemannian
manifold.
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Definition 5. A connection D on a smooth
manifold M is a function D : X(M)× X(M)→
X(M) such that

(1) DVW is F(M)-linear in V ,

(2) DVW is R-linear in V ,

(3) DV (fW ) = (V f)W+fDVW for f ∈ F(M).

DVW is called the covariant derivative of W
with respect to V for the connection D.

iii. Parallel Translations
The simplest case of a vector field on a mapping
is a vector field Z on a curve α : I → M .
Z smoothly assigns to each t ∈ I a tangent
vector to M at α(t). For example, the velocity
α′ is a vector field on α, as is the restriction
Vα of any V ∈ X(M). The set X(α) of all
(smooth) vector fields on α is a module over F(I).

When M is a semi-Riemannian manifold there is
a natural way to define the vector rate of change
Z ′ of a vector field Z ∈ X(α).

Proposition 1. Let α : I → M be a curve in
a semi-Riemannian manifold M . Then there is
a unique function Z → Z ′ = DZ/dt from X(α)
to X(α), called the induced covariant derivative
such that

(1) (aZ1 + aZ2)′ = aZ ′1 + aZ ′2 (a, b ∈ R),

(2) (hZ)′ = (dh/dt)Z + hZ ′ (h ∈ F(I)),

(3) (Vα)′(t) = Dα′(t)(V ) (t ∈ I, V ∈ X(M)).

In the special case where Z = α′ the derivative
Z ′ = α′′ is called the acceleration of the curve
α. If we assume that α lines in the domain of
a single coordinate system x1, x2, ..., xn. By the
basis theorem, if Z ∈ X(α), then at α(t),

Z(t) = ΣZ(t)xi∂i = Σ(Zxi)(t)∂i.

Then from (3) we have

Z ′ =
∑ dZi

dt
∂i +

∑
ZiDα′(∂i)

If we write out the derivative explicitly, the
equation becomes

Z ′ =
∑
k

{dZ
k

dt
+

∑
i,j

Γki,j
d(xi ◦ α)

dt
Zj}∂k

Where Γki,j is defined as

Γki,j = 1
2

∑
m

gkm{∂gjm
∂xi

+ ∂gim
∂xj

+ ∂gij
∂xm
}.

We donate this symbol as Christoffel symbol.

If Z ′ = 0, then Z is said to be parallel. This
formula shows that the equation Z ′ = 0 is equiv-
alent to a system of linear ordinart differential
equations. Thus the fudamental existence and
uniqueness theorem of such system yields:

Proposition 2. For a curve α : I → M , let
a ∈ I and z ∈ Tα(a)(M). Then there is a unique
parallel vector field Z on α such that Z(a) = z.

In the notation of the proposition, if b ∈ I then
the function

P = P b
a(α) : Tp(M)→ Tq(M)

sending each z to Z(b) is called parallel transla-
tion along α from p = α(a) to q = α(b).

Lemma II.1. Parallel translation is a linear
isometry.

Proof. With the notation as above, let v, w ∈
Tp(M) correspond as in the proposition to par-
allel vector fields V,W . Since V +W is also par-
allel, P (v + w) = (V +W )(b) = V (b) +W (b) =
P (v) + P (w). Similarly, P (cv) = cP (v). Thus P
is linear.
If P (v) = 0 then by the uniqueness in the propo-
sition, V can only be the identically zero vector
field on α. Hence v = V (α) = 0. Thus P is
one-to-one, and since tangent spaces to M have
the same dimension, P is linear isomorphism.
Finally, for V,W as above,

d

dt
〈V,W 〉 = 〈V ′,W 〉+ 〈V,W ′〉 = 0

Hence 〈V,W 〉 is constant, so

〈P (v), P (w)〉 = 〈V (b),W (b)〉 = 〈V (a),W (a)〉 = 〈a, b〉
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iv. Geodesics
With all the mathematical basics, we now gen-
eralize the Euclidean notion of straight line. A
geodesic in a semi-Riemannian manifod M is a
curve γ : I → M whose vector field γ′ is par-
allel. Equivalently, geodesics are the curves of
acceleration zero γ′′ = 0.

Corollary II.1. Let x1, ..., xn be a coordinate
system on ⊂M. A curve γ in U is a geodesic
of M if and only if its coordinate functions xk ◦γ
satisfy

d2(xk ◦ γ)
dt2

+
∑

i, jΓkij(γ)d(xi ◦ γ)
dt

d(xj ◦ γ)
dt

= 0

for 1 ≤ k ≤ n.

In fact, these expressions are the compo-
nents of γ′′ relative to the coordinate vector
fields ∂1, ..., ∂n. As discussed above, the existence
and uniqueness theorem for ordinary differential
equations gives the following local result.

Lemma 1. If v ∈ Tp(M) there exists an interval
I about 0 and a unique geodesic γ : I →M such
that γ′(0) = v.

Lemma 2. Let α, β : I → M be geodesics. If
there is a number a ∈ I such that α′(a) = β”(a),
then α = β.

Example II.1 (Geodesics of Semi-Eu-
clidean Space.). For natural coordinates the
Christoffel symbols vanish, so the geodesic equa-
tions become

d2(ui ◦ γ)
dt2

= 0(1 ≤ i ≤ n).

Thus ui(γ(t)) = pi + tvi for all t, where pi and
vi are arbitrary constants.

III. Conclusion

The discussion so far have shown that the
geodesics is a powerful tool that provides a gen-
eralization to the Euclidean straight line. This
proves to be a powerful tool for us to analyze the
properties in general relativity, where the trajec-
tory a particle is moving can be best modeled
with geodesics.

IV. Upcoming work

In the first half of the research, the various
basics of differential geometry is being explored.
The report presented a wide range of materials
in differential geometry that is essential for the
understanding of the works in Kerr Metrics. The
materials covered including smooth manifolds,
tensors, semi-Riemannian manifolds, parallel
translations, geodesics and Kerr metrics.

With an understanding of all the essential ma-
terials covered in the Kerr Black metrics, the
upcoming work is likely to have a heavier focus
on discussing the key materials central to the
bound in non-rotating black hole. As outlined in
the research outline, an approach moving from
the specific case of geodesics of Kerr Black hole,
namely the equatorial geodesics to a more gen-
eral case, namely the geodesics with varying an-
gle, would be adapted. In light of all the previous
research, it is hoped that an better approxima-
tion on the current bond could be obtained by
the end of this research.
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