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Abstract 
 

Accurately predicting hospital length 
of stay (LOS) can ease patients’ emotional 
strain, help optimize hospital operations, and 
reduce costs. Previous research has used 
multilayer perceptrons (MLPs) to predict 
LOS using a binary threshold, but research 
is lacking in predicting multiclass LOS (i.e. 
specific day ranges). In addition, current 
literature lacks systematic testing to 
determine which combinations of 
comprehensive patient attributes most 
strongly correlate with LOS. Using MLPs, 
this experiment optimizes parameters to 
predict binary and multiclass LOS, then 
assesses the relative importance of patient 
attributes in determining LOS. The first 
phase of this project consisted of pre-
processing data from the Medical 
Information Mart for Intensive Care (MIMIC-
III) clinical database to select and format a 
group of patient attributes to train the MLP. 
The second phase entailed training and 
testing the MLP while varying neural network 
parameters to achieve a baseline predictive 
accuracy. The final phase focused on 
removing attributes from the training inputs 
to determine their relative importance based 
on a decrease in accuracy. The MLP 
increases hospital length of stay predictive 
accuracy by up to 100%, with ICU length of 
stay as the most important attribute. 
 
Introduction  
 

An extra day at the hospital costs 
$10,400 on average, while hospital stays 
each year cost the US health system $377.5 
billion (HealthCatalyst, n.d.). For patients 
and their families, knowing a substantiated 

estimate of their length of stay may improve 
their mental state and ease their anxiety, 
potentially leading to better health outcomes. 
As more emphasis is placed on value-based 
care, nurses and doctors will be better able 
to provide such care in light of how long a 
patient will likely stay at the hospital. 
Predicting hospital length (LOS) is of 
substantial value to optimizing hospital 
operations, including resource planning and 
allocation. For example, administrative staff 
can more efficiently allocate wards and 
bedspace if they can better predict the flow 
of incoming and outgoing patients. Thus, 
they may have a better idea for how many 
patients they can accommodate and when. 
At the same time, an accurate prediction may 
relieve financial burden off payers who will 
have a better estimate in advance of the 
healthcare costs. 

A crucial first step is to focus on LOS 
prediction accuracy without much 
consideration for what patient attributes are 
used to build the model. However, it is 
important to realize that data collection 
comes with a cost. For instance, certain 
laboratory tests that may be good indicators 
for LOS may be financially infeasible for the 
patients or the hospital. As a result, it is 
paramount to assess the relative importance 
of LOS factors, thereby reducing the number 
of factors needed without compromising high 
predictive accuracy. Based on current 
literature, determining which patient 
attributes contribute most to predicting LOS, 
without targeting a specific demographic or 
condition, has not been methodically 
analyzed.  

Especially in the past decade, the 
shift from paper-based to electronic health 
records has facilitated research studies on 
aggregate patient data. Leveraging the 
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electronic nature of this data in conjunction 
with powerful digital data analysis tools, 
researchers are able to analyze trends and 
make predictions infeasible before. The MIT 
Lab for Computational Physiology developed 
the Medical Information Mart for Intensive 
Care (MIMIC-III), which contains data on 
more than 20,000 critical care patients 
admitted to Beth Israel Deaconess Medical 
Center in Boston (Johnson et al., 2016). 
Using patient attributes in the MIMIC-III 
database, this paper trains and tests a neural 
network model to predict LOS and assess 
which attributes are most important in 
determining LOS. 
 
Literature Review 
 

While there exist various models that 
have worked with MIMIC-III data for LOS 
prediction, currently there are no systematic 
models for general populations that 1. 
determine the relative importance of input 
factors contributing to hospital length of stay 
and 2. predict multiclass ranges for LOS. In 
this context, general refers to a population 
not filtered for a specific ethnicity or disease. 

MIMIC-III is a single-center database 
consisting of records and attributes of more 
than 20,000 patients admitted to critical care 
units. Johnson et al. introduced MIMIC-III to 
the public in 2016, surveying its various 
relational tables including vital signs, lab 
measurements, observations, codes, 
survival data, LOS, and more (Johnson et al., 
2016).  

Due to its comprehensiveness and 
accessibility, many people have worked with 
MIMIC-III data to analyze trends and other 
information that can be extracted. For 
example, Huang et al. explored how a pre-
extended version (MIMIC-II) can be used to 
analyze the results of laboratory tests, 
detailing steps to access the database and 
how to effectively work with its relational 
structure (Huang, Badrick, & Hu, 2017). 

With MIMIC-III’s release, researchers 
focused on two broad predictive fields: 1. 
disease-related outcomes such as 

complications and 2. time-based outcomes 
such as LOS.  

In the former category of disease-
related outcomes, Mohan analyzed the 
MIMIC-III database, focusing specifically on 
patients designated by icd9_code 996, 
indicating that they experienced 
complications following certain procedures. 
Mohan’s neural network model, which 
outputs a binary variable for the existence of 
such complications, achieved a predictive 
accuracy of over 80% (Mohan, 2018). 
Meanwhile, Mao et al. used a machine 
learning-based sepsis-prediction algorithm 
known as InSight using just six basic vital 
signs. They were able to achieve an AUROC 
curve of 0.92 for the detection of sepsis (Mao 
et al., 2018).  

In the latter category of time-based 
outcomes, Kelly et al. determined that age, 
co-morbidity levels, and marital status are 
associated with LOS (Kelly, Sharp, Dwane, 
Kelleher, & Comber, 2012). Meanwhile, 
targeting specific conditions is evident in the 
work of Wang et al. (acute exacerbation of 
chronic obstructive pulmonary disease) and 
that of Hachesu et al. (cardiac problems) 
(Hachesu, Ahmadi, Alizadeh, & Sadoughi, 
2013; Y., K., F.A., S., & T., 2014). 

Meanwhile, Gentimis et al. trained a 
neural network on a broad range of patient 
data, from admission information and 
ethnicity to age and primary diagnosis, to 
predict hospital LOS with 80% accuracy. 
This experiment differs from previous ones in 
that it did not select for a particular ethnicity 
or disease, thus enabling LOS prediction for 
a broader demographic (Gentimis, Alnaser, 
Durante, Cook, & Steele, 2018). While this 
paper achieved remarkable accuracy given 
its generalized input factors, it did not 
produce multiclass classification models, 
and it provided no insight into how important 
the factors were relative to each other. 

The current literature illustrates that a 
combination of complex factors influence 
LOS, suggesting the importance to assess 
the relative importance among these factors 
in a comprehensive manner. 
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Methodology 
  
MIMIC-III Database 
 

The first major component of this 
experiment was to analyze MIMIC-III, which 
contains hospital records of more than 
20,000 patients who had been admitted to 
critical care units between 2001 and 2012. In 
accordance with HIPAA regulations, the data 
has been de-identified and anonymized. 
MIMIC-III is composed of multiple datasets 
stored as csv files. Below are representative 
datasets and brief descriptions:  
• Admissions: patient registration, 

healthcare, background, and other 
personal information 

• Caregivers: caregiver type, e.g. 
research nurse (RN), medical doctor 
(MD), or pharmacist (PharmD)   

• Diagnoses: information and codes on 
diagnoses 

• Discharges: details of patients leaving 
hospital 

• Prescriptions: medication information 
from the hospital computerized hospital 
entry system 

• Procedures: details on procedures (and 
their corresponding codes) carried out on 
patients during stay 

• Patients: additional demographic 
information not in ‘Admissions’ 

• Patient Notes: notes and observations 
recorded by nurses or doctors 

 
A comprehensive overview of 

attributes in the database is available at 
Physionet, MIMIC-III’s host website 
(“MIMIC-III Critical Care Database,” 2016). 

 
Data Pre-processing Using Excel 
 

MIMIC is a relational database, 
meaning that patient information is spread 
across data tables on different files. IDs 
present in these tables enable cross-linkage 
and comparison. For example, merging data 
regarding a patient’s admission and gender 
requires linkage using ‘subject id’.  

 Excluding dataset linkers such as 
subject id or hospital admission id, the 
finalized list of input attributes used, with 
specifications if applicable, is as follows: 
 

1. Admission type 
2. Admission location 
3. ED wait time (admit time – 

registration time) 
4. Insurance 
5. Religion 
6. Marital status 
7. Ethnicity 
8. ICU LOS 
9. Admission season (divided year 

into quarters) 
10. Admission time of day (divided 

day into quarters) 
11. Gender 
12. Age (registration time – date of 

birth) 
13. First care unit 
14. Last care unit 
15. First ward 
16. Last ward 

 
The output used as validation is 

Hospital LOS, calculated as (discharge time 
– admit time). For binary classification, 
outputs < 6.3 days (median) were assigned 
0, and outputs >=6.3 days were assigned 1. 
For X-class classification, outputs were split 
into X classes based on iso-percentile 
boundaries, with an equal number of patients 
in each output class. 

The following are rationales for 
attribute selection: ‘hadm_id’ (hospital 
admission ID) and ‘subject_id’ (uniquely 
identifies patient) are used as identifiers to 
appropriately merge data across the 
relational database. Admit time and 
discharge time are used to determine season 
and time of day, which could influence LOS 
due to potential staffing shortages or peak 
hour visits. Insurance type may reflect a 
patient’s financial capability, while religion 
and marital status may reflect a patient’s 
lifestyle. Both the type of care units during 
ICU stay and ICU stay LOS could reflect 
severity of a patient’s condition, as could 
admission type or location. Factoring in 
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gender can account for genetic differences, 
while DOB is used to determine age.  
 After the aforementioned attributes 
were selected, data pre-processing in Excel 
began. The first step was to merge all 
relevant attributes into one central excel file 
through ‘subject_id’ or ‘hadm_id’). Since not 
all data tables provide complete or accurate 
information for the same patients, a standard 
copy/paste or filter would not be sufficient. 
Rather, Excel’s VLOOKUP function was 
used since it is designed to merge datasets 
based on a common identifier. Because a 
single VLOOKUP function was inefficient, a 
double VLOOKUP was implemented, 
leveraging binary search without 
compromising precision. Storing hundreds of 
thousands of functions that would never be 
changed was unnecessary and inefficient, so 
all formulas were converted to raw values 
with the merging of each attribute. After all 
input attributes were finalized, the data was 
cleaned to remove any N/A, VALUE! errors, 
blanks, incorrect data (e.g. negative LOS 
values), and other inconsistencies.  
 A multilayer perceptron only takes 
quantitative values as inputs. Thus, the last 
step of pre-processing required converting 
all categorical values to quantitative values. 
Here is a representative example:  
 
MARITAL_STATUS: 

- Married/life partner à 0 
- Widowed à 1 
- Single à 2 
- Divorced/separated à 3 
- Unknown à 4 

 
The mapping shown above was 

compared to a standard normalized mapping 
to contrast baseline accuracy. 
 
Multilayer Perceptron Neural Networks 
 

(Artificial) neural networks (NN) are 
modeled on the neural system of the human 
body. Just like how the human nervous 
system is composed of individual neurons 
highly specialized in what information they 
process, NN comprise layers of artificial 
neurons. Inputs in the NN are combined 

through a system of weighted synapses to 
produce an output. 
 Multilayer perceptrons (MLP) are a 
class of neural networks. In addition to an 
input layer and output layer of neurons, they 
may contain hidden layers that help 
determine the optimal model for specific data. 
Initially, randomly normalized weights are 
assigned to each neuron in each layer. Each 
input neuron intakes one attribute and 
associates it with the random weight before 
passing on the value to the next layer. Each 
neuron of the next layer then calculates a 
weighted average of all attributes and 
passes on this value to the next layer. The 
process repeats until the MLP outputs a 
prediction. Fig. 1 shows a representative 
skeleton of a binary classification MLP. 
 The MLP learns through iterative two-
step back-propagation. The process by 
which inputs are assigned weights, taken a 
weighted average of, and passed onward to 
the next layer is known as feeding forward 
(1st step). The ultimate goal for an MLP is to 
minimize an error function, often highly 
complex and non-linear. Thus, the output 
produced for one set of attributes is 
compared to the theoretical output and the 
total error is calculated. Through a loss 
function, that error is propagated backward 
to each layer of the MLP to recalculate the 
weights (2nd step).  

 
 
 

 
 
 

Fig. 1: A typical skeleton of a binary 
classification multilayer perceptron (MLP) neural 
network. This experiment uses 16 attributes as 
baseline input and X neurons as output, 
determined by X-class classification. Relative 
importance assessment was conducted by 
stripping away combinations of input factors. 
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MLP Training and Testing  
 

The pre-processed spreadsheet was 
loaded into a Jupyter Notebook file. Initial 
exploration of the MLP borrowed python 
code from Medium.com to facilitate 
understanding underlying structure at a 
fundamental level (Spencer-Harper, 2015). 
Two key takeaway points from this initial 
model are the usage of the log loss function 
and the need for batch randomization. The 
steep gradient of the log loss function for 
values (errors) close to 0 makes it better at 
differentiating between similar inputs. 
Meanwhile, batch randomization lessens the 
likelihood of overfitting to the data. 

Eventually, the basic skeleton was 
replaced with a model via the Python Keras 
machine learning package. Keras provides a 
flexible user interface that enables 
convenient manipulation of parameters in 
building and testing the model. 

A k-fold cross-validation procedure 
was used to train and test predictive 
accuracy. This procedure is commonly 
preferred in machine learning applications 
due to less bias than other methods, such as 
the simple train/test split. Following is the k-
fold cross-validation procedure: 

 
1. Shuffle the dataset randomly. 
2. Split into k groups. 
3. For each group— 

a. Use as the validation set. 
b. Train NN on remaining groups. 
c. Fit a model on training set. 
d. Evaluate model on this group. 
e. Retain performance and discard 

model. 
4. Summarize the overall performance of 

model using the k different scores. 
 
Findings 
 
Nomenclature 
 

The following nomenclature is 
necessary to understand the underlying 
parameters of an MLP: 
 

• Neuron: a node in a neural network that 
combines weighted input(s) into an 
output 

• Layer: a group of neurons all at the 
same level of an MLP hierarchy 

• Kernel initializer: initial random 
distribution of weights 

• Activation function: function that takes 
in weighted inputs and combines them 
to form an output 

• Loss function: function used to 
determine error and how it is back-
propagated to redefine weights 

• Optimizer: a set of conditions that 
characterizes how the MLP learns, 
including learning rate 

• Epoch: one pass of the entire training 
set through the MLP 

• Batch size: how many data points used 
to train the MLP at one time           
(batch size * # batches = 1 epoch) 

• Splits: how many times the entire 
dataset is split for high-efficiency training 
and cross-validation 

 
Because the LOS data is skewed to 

the right (Fig. 2), the median of 6.3 days is 
used as the binary threshold instead of the 
mean. Meanwhile, for X-Class classification, 
thresholds were established based on iso-
percentile partitions into X equal-size 
classes. For a specified set of parameters 
(defined above), the two main metrics used 
to determine performance are the following: 
 
• Mean accuracy: average frequency of 

correct predictions, where ‘correct’ 
means MLP predicts the same class as 
a patient’s actual class 

• Standard deviation: average std. dev. 
from the mean accuracy  

 
Establishing Binary Baseline Accuracy 
 

The MLP achieved the highest 
consistent binary accuracy of 71% using the 
following parameters: 
 
• Attributes: Admit time of day, Admit 

season, ED wait time, Admission type,  



  Yin 6  
 

  

Fig. 2: Hospital length of stay (LOS) is heavily skewed to the right. Thus median (6.3 days) is 
used instead of mean (9.3 days) as threshold for binary classification. Using the median 
ensures that the neural network’s predictive accuracy can be fairly compared to the 50% 
guessing baseline since there are an equal number of patients below and above the threshold. 

Fig. 3: MLP model prediction rate is 40% to 100% higher than random guessing baseline.  
~0.004 std. dev for each class. As the number of classes for classification increases, so 
does the improvement from random guessing to model prediction. Random guessing 
accuracies are equal to 1/X (X = number of classes) since thresholds were determined by 
iso-percentile boundaries.  
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Admission Location, Insurance, 
Religion, Marital status, Ethnicity, 
Gender, Age, First care unit, Last care 
unit, First ward ID, Last ward ID, ICU 
LOS 

• Validation: Hospital LOS, where a 0 
means actual LOS<6.3 days (median), 
and a 1 means actual LOS>=6.3 days 

• Model: Sample size = 20553, 16 input 
neurons, 0 hidden layers, normal kernel 
initializers, relu activation for input layer, 
sigmoid activation for output layer, 
binary cross entropy (log loss) function, 
adam optimizer, epochs = 100, batch 
size = 1250, splits = 5 

 
 Establishing X-Class Baseline Accuracy 
 

Optimal X-class accuracy was 
established using the following parameters: 
16 input factors using ‘relu’ loss, X output 
nodes using ‘softmax’ loss, 0 hidden layers, 
nsplits=3, epochs=100, batch_size=1250). 
The MLP multiclass models increased LOS 
predictive accuracy by 40% to 100%, 
compared to random guessing (Fig. 3). 

 
Testing Different Optimizers 
 

Although the ‘adam’ optimizer was 
used to determine baseline accuracy, there 
was no significant difference in performance 
when any of these optimizers was used 
instead: ‘rmsprop’, ‘adagrad’, ‘adadelta’, 
‘adamax’, or ‘nadam’. 

 
Optimizing Sample Size 
 
 Immediately after any excel data is 
imported into python, the data is completely 
randomized and re-indexed to minimize any 
biases due to ordering of the original dataset. 
A sample size of N was selected from the first 
N rows of the randomized data table. Sample 
sizes range from 100 to 20553 (entire table). 
For consistency, batch size is 1/10 of sample 
size and the number of epochs remains 
constant at 100. Four configurations of MLPs 
were tested for each sample size: 
 

1. Baseline (non-standardized, but all 
inputs are still between 0 and 1) 

2. Normalized (all input attributes are 
scaled to have a distribution of mean = 0 
and std dev = 1) 

3. Half Input (half as many (8) neurons are 
used as input attributes (16) in the input 
layer) 

4. Extra Hidden (include a hidden layer with 
half as many neurons as attributes) 

 
The following results hold for each of 

the four configurations: Above the threshold 
N=500, average accuracy does not increase. 
This result bodes well for increasing 
efficiency due to a relatively small sample 
size. Average binary accuracy remains 
stable in the 70-71% range. Above the 
threshold N=1250, average standard 
deviation stabilizes in the 1-2% range. For 
the sake of accuracy, efficiency, and minimal 
variation, N=1250 appears to be ideal.  
 
Optimizing Batch Size 
  
 In machine learning, data is often 
split into batches to train to improve 
efficiency. For consistency, N=20000 and the 
normalized configuration were used for all 
batch sizes ranging from 156 to 20000 by 
powers of 2. Batch sizes ranging from 312 to 
5000 delivered mean accuracies in the 71% 
range. Meanwhile, mean accuracy drops 
considerably as batch size increases to 
20000 (65%). Average standard deviation 
remains stable in the 1% range across all 
batch sizes. Based on these results, batch 
size = 1250 appears to be ideal, producing 
the highest accuracy without compromising 
efficiency. 
 
Optimizing Number of Epochs 
 
 Using epochs ≥30 resulted in no 
significant different in predictive accuracy. In 
light of this threshold, and in consideration of 
standard practice, 100 epochs was used to 
establish baseline predictive accuracy.  
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Optimizing Number of Neurons 
 
 A single input layer and single output 
layer with no hidden layers configuration is 
used to test the effect of # input neurons on 
predictive accuracy. Parameters held 
constant include N=20553, a normalized 
configuration, N/10 batch size, and 100 
epochs. Using 3 or more input neurons, the 
MLP predicted stably at ~71% accuracy with 
~1% standard deviation. This result bodes 
well for increasing efficiency, especially 
since the number of input neurons needed (3) 
is significantly less than the number of input 
attributes (16). 
 Next, a hidden layer was added to 
test the performance of MLP with various 
combinations of # of input and hidden layer 
neurons. A total of 25 combinations were 
tested (1,2,4,8,16 for each layer). Using 
more than a (2 input, 4 hidden) neuron 
combination (~71% average accuracy) did 
not significantly improve average accuracy. 

Standard deviation, as in previous cases, 
stayed in the 1% range. It is important to note 
that both the (2,4) and (8,1) combinations 
produced ~71% average accuracy, which 
suggests that a hidden layer is not needed.   
 
Relative Importance of Attributes 
 

An initial round of relative importance 
testing was conducted by removing each of 
the 16 attributes one at a time to see which 
removal resulted in the largest decrease in 
accuracy. Removing ICU length of stay as an 
input variable resulted in the sharpest 
decrease in accuracy of 39%, compared to a 
~0-3% decrease upon removing any other 
factor. These results strongly indicate that 
ICU LOS is by far the most important 
attribute for predicting length of stay. Indeed, 
the graph of hospital LOS vs. ICU LOS 
exhibits strong positive correlation (Fig. 4). 

Upon first glance at patient attributes, 
it is intuitive that patient diagnoses—

Fig. 4: Strong positive correlation between ICU LOS and hospital LOS. The highest classification 
of ICU LOS (1.00) corresponds with the highest average hospital LOS for each class (binary, 5, 
10, and 20). These trends indicate that ICU LOS per se is a good indicator of hospital LOS. A 
rationale for the strong correlation is that ICU LOS reflects the severity of a patient’s condition, 
which in turn affects the duration of their treatment in the hospital. 
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especially the primary diagnosis—would 
have a significant effect on LOS. However, 
adding in ‘diagnosis’ as the 17th attribute did 
not improve baseline accuracy. In fact, 
accuracy even decreased to ~68%. This 
decrease in accuracy is counterintuitive 
since disease is expected to heavily 
correlate with LOS, but a plausible 
explanation for lowered accuracy is the 
significantly smaller sample size (1205 with 
diagnosis info vs 20553 total). 

Fig. 5 provides a visualization of the 
relative importance of patient attributes in 
predicting hospital LOS. 
 

Conclusion 
 
Key Take-Away Points 
 
 X-class classification models 
increase predictive accuracy by up to 100% 
compared to random guessing. The MLP 
predicts binary classification with ~70% 
accuracy. The most important patient 
attribute in determining hospital LOS is ICU 
LOS.  
 
Future Work 
 

Since this project could not possibly 
test all combinations of input factors, a 
natural extension of this project is to 
continue forming various plausible 
combinations of input attributes, removing 
them from the training set, and analyzing 
the change in predictive accuracy. In this 
manner, relative importance among more 
variables can be flushed out, aiding the 

effort to predict LOS while increasing 
efficiency and saving costs due to data 
collection. 

One interesting question concerns 
how well an NN will perform when given 
individual variables vs. conjoined variables 
(i.e. if the individual variables are operated 
upon linearly, quadratically, etc.). For for the 
linear case, theoretically there should be no 
difference in performance since MLPs are 
designed to work with linear combinations of 
inputs. However, what if the combinations 
are formed non-linearly? And what 
implications do conjoined variables have on 
efficiency? 

Ultimately, more work needs to be 
done on analyzing the reasoning behind the 
relative importance of various attributes. 
When researchers or hospitals need to 
explain why they feed certain attributes but 
not others into a neural network or any 
machine learning tool, they need to explain 
their rationale in human terms. This 
research may need to rely on the power of 
not only intuition and logic but also other 
fields such as biology, psychology, 
anthropology, and sociology. 
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