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1. Abstract
This paper seeks to study the geodesics motion outside a Kerr black hole (i.e. restricted to the region outside the outer horizon). With a basic
understanding of the concepts in differential geometry, namely smooth manifolds, tensors, semi-Riemannian geometry, and the basics of geodesics and
Kerr metrics, this paper then discussed equatorial geodesics, the geodesics with θ ≡ π

2 . With detailed outlining about the properties of equatorial
geodesics, the paper then discussed about more general case, where Hamilton-Jacobi approach is applied.

2. Background
In general relativity, a geodesic is a general-
ization of the notion of a "straight line" to
curved spacetime. In particular, the world
line(frame) of a particle free from all external,
non-gravitational force is a particular type of
geodesic.

To mathematically analyze its properties, we
employed a system of metric, the Kerr metric.
According to the Kerr metric, rotating black-
holes should exhibit frame-dragging, a distinc-
tive prediction of general relativity. This effect
predicts that objects coming close to a rotating
mass will be entrained to participate in its rota-
tion, because of the swirling curvature of space-
time itself associated with rotating bodies. At
close enough distances, all objects - even light -
must rotate with the black-hole.

3. Geodesics
First we generalize the Euclidean notion of
straight line. A geodesic in a semi-Riemannian
manifod M is a curve γ : I → M whose vector
field γ′ is parallel. Equivalently, geodesics are
the curves of acceleration zero γ′′ = 0.

Definition 1. Let x1, ..., xn be a coordinate sys-
tem on u ⊂ M. A curve γ in U is a geodesic of
M if and only if its coordinate functions xk ◦ γ
satisfy

d2(xk ◦ γ)
dt2

+
∑

i, jΓkij(γ)d(xi ◦ γ)
dt

d(xj ◦ γ)
dt

= 0

for 1 ≤ k ≤ n.

4. Equatorial Geodesics
Equatorial geodesics are defined as geodesics
with:

θ ≡ π

2 .

We first find that such geodesics exist, i.e.
that equatorial geodesics are solutions of the
geodesics equation, or equivalently, of the Euler-
Lagrange equations, which is given by

d

dλ

∂L

∂ẋα
= ∂L

∂xα
.

If, at λ = 0, the particles moves in the equatorial
plane, θ(λ = 0) = π

2 and θ̇(λ = 0) = 0; then we
have a well-posed Cauchy problem of the form:

θ̈ = · · · ; θ̇(λ = 0) = 0; θ(λ = 0) = π

2

which admits one and only one solution; since
θ ≡ π

2 is a solution, it is the solution. Thus a
geodesic which starts in the equatorial plane,
remains in the equatorial plane.

It can be shown that this also happens in
the Schwarzschild metric, and it is possible
to generalize the result to any orbit. In the
case of Kerr metric, however, the generalization
to any orbit is not possible. This is because
unlike Schwarzchild metric, which is planar,
Kerr metric is only axially symmetric. We can,
however, conclude that geodesics strating in the
equatorial plane are planar.

Under this case, it can be shown that the equa-
tion in the energy state,E, can be solved via the
equation:

CE2 − 2BLE −AL2 = 0,

where A ≡ 1− 2M
r , B ≡

2Ma
r , C ≡ r2+a2+ 2Ma2

r

figureDiagrams in the xy-plane of different
equatorial geodesics joining the test particle and
the observer at p The parameter φ1 represents

the φ-coordinate of qs

5. Timelike Geodesics
In the case of timelike
geodesics, the equation be-
comes:

ṙ2 = C

r2 (E−V+)(E−V−)− ∆
r2 ,

And under κ = −1 This equa-
tion would not allow a sim-
ple qualitative study as in the
case of null geodesics. There-
fore, we would restrict our at-
tention to a very relevant quan-
tity (with astrophysical inter-
est), namely the location of the
innermost stable circular orbit

(ISCO), which, in the Schwarzschild case, is at
r = 6M. In Kerr spacetime, the qualitative be-
havior for rISCO is simple: there are two solu-
tions

r±ISCO(a)

one corresponding to corotating orbits, one to
counterrotating orbits. For a = 0, obviously the
two solutions coincide to 6M ; by increasing |a|,
the ISCO moves closer to the black hole for coro-
tating orbits, and far away from the black hole
for counterrotating orbits. It can also be verified
that a circular timelike geodesic in the equatorial
plane satisfies the 3rd Kepler law. We remind
that the Lagrangian is

L = 1
2gµν ẋ

µẋν

and the r Euler-Lagrange equation, being grµ =
0 if µ 6= r, is

d

dλ
(grr ṙ) = 1

2gµν,rẋ
µẋν

and note that the solutions

ωpm =
√
M

r
3
2 ± a

√
M

This is the relation between angular velocity
and radius of circular orbits, and reduces, in
Schwarzschild limit a = 0, to

ωpm = ±
√
M

r3 ,

which is Kepler’s 3rd law.

6. Future works
This research presented a wide range of materials in differential geometry that is essential for the
understanding of the works in Kerr Metrics. The materials covered including smooth manifolds,
tensors, semi-Riemannian manifolds, parallel translations, geodesics and Kerr metrics.
With an understanding of all the essential materials covered in the Kerr Black metrics, the upcoming
work is likely to have a heavier focus on discussing:
1. the key materials central to the bound in non-rotating black hole..
2. an approach moving from the specific case of geodesics (the equatorial geodesics) to a more

general case (the geodesics with varying angle).
In light of all the previous research, it is hoped that an better approximation on the current bond
could be obtained by the end of this research.
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